Hyperspectral Imaging Lidar Fiber Array Focal Plane Spectroscopy Technology
Citation
SUN, Huaquan. (2022). Hyperspectral Imaging Lidar Fiber Array Focal Plane Spectroscopy Technology [高光谱成像激光雷达光纤阵列焦面分光技术]. Automation Applications Innovation and Communication (自动化应用 创新与交流), 12, 45-46. https://doi.org/10.19769/j.zdhy.2022.12.045
- Author (Chinese): 孙华权
- Author (English Translation): SUN Huaquan (This is a phonetic transliteration)
- Year: 2022
- Title (Chinese): 高光谱成像激光雷达光纤阵列焦面分光技术
- Title (English Translation): Hyperspectral Imaging Lidar Fiber Array Focal Plane Spectroscopy Technology
- Journal (Chinese): 自动化应用 创新与交流
- Journal (English Translation): Automation Applications Innovation and Communication (This is a suggested translation based on the content)
- Issue: 第 12 期 (No. 12)
- DOI: 10.19769/j.zdhy.2022.12.045
Keywords
- 高光谱成像 / hyperspectral imaging
- 激光雷达 / lidar
- 光纤阵列焦面分光技术 / fiber array focal plane spectroscopy
- 遥感 / remote sensing
- 测绘 / surveying
- 光谱信息 / spectral information
- 高程信息 / elevation information
- 回波信号 / echo signal
- 透射式光栅 / transmission grating
- 光纤阵列 / fiber array
- 探测器 / detector
- 单管探测器 / single-element detectors
- 光电倍增管 / photomultiplier tubes
- 信噪比 / signal-to-noise ratio
- 微透镜 / microlens
- 微透镜阵列 / microlens array
Brief
This article discusses the design of an airborne hyperspectral imaging lidar receiving system that utilizes fiber array focal plane spectroscopy to enable simultaneous acquisition of spatial and spectral information for remote sensing and surveying.
Summary
This article presents the design of an airborne hyperspectral imaging lidar receiving system that utilizes fiber array focal plane spectroscopy to achieve simultaneous acquisition of spatial (elevation) and rich spectral information for remote sensing and surveying. The system employs a transmission grating for spectral dispersion, a fiber array for coupling specific wavelengths to corresponding detectors, and considers different scanning methods to achieve comprehensive ground coverage. The design aims to overcome limitations of traditional methods by enabling all-weather spectral detection and improving the precision of identifying ground objects. The article discusses the system's basic principles, parameter design, simulation, and the design of the focal plane spectroscopy system, including the use of microlenses to enhance coupling efficiency. Ultimately, this technology aims to advance the capabilities of lidar in remote sensing and surveying by integrating high-resolution spatial and spectral data acquisition.
Origin: https://doi.org/10.19769/j.zdhy.2022.12.045